Qfedavg Strategy
qFedAvg¶
根据文章FAIR RESOURCE ALLOCATION IN FEDERATED LEARNING,我们实现了qfedavg聚合算法。
完整的该示例的源代码参考qFedAvg。
To start a qfedav server¶
strategy = message_type.STRATEGY_qFEDAVG # define server type
server = AggregateServer(args.addr, strategy, args.num, q=.2, learning_rate = 1)
server.run()
python iflearner/business/homo/aggregate_server.py -n 2 --strategy qFedAvg --strategy_params {"q":.2, "learning_rate":1}
To start a client¶
请参阅如何使用
需要注意的是,在客户端开始拟合之前,需要获取当前模型在训练数据上的损失值loss
。 然后,您应该在客户端重写 Trainer.get
方法,并将 loss 关键字添加到上传的参数中。
def evaluate_traindata(self):
batch_time = AverageMeter("Time", ":6.3f", Summary.AVERAGE)
losses = AverageMeter("Loss", ":.4e", Summary.AVERAGE)
top1 = AverageMeter("Acc@1", ":6.2f", Summary.AVERAGE)
top5 = AverageMeter("Acc@5", ":6.2f", Summary.AVERAGE)
progress = ProgressMeter(
len(self._train_loader), [batch_time, losses, top1, top5], prefix="Test on training data: "
)
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(self._train_loader):
if self._args.gpu is not None:
images = images.cuda(self._args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(self._args.gpu, non_blocking=True)
# compute output
output = self._model(images)
loss = self._criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % self._args.print_freq == 0:
progress.display(i)
progress.display_summary()
self._fs = losses.avg
def get(self, param_type=''):
parameters = dict()
parameters['loss'] = np.array([self._fs])
for name, p in self._model.named_parameters():
if p.requires_grad:
parameters[name.replace('module.', '')
] = p.cpu().detach().numpy()
return parameters